The Potential for Acupuncture to Attenuate Hippocampal Apoptosis

Hana Marsheck¹ and Yunsuk Koh¹*

¹Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA.

Authors’ contributions

This work was carried out in collaboration between both authors. Author HM provided the idea for the review, conducted the search of the literature and wrote the manuscript. Author YK provided the overall design and structure of the paper, contributed to the search in the literature, wrote and revised the manuscript. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJMAH/2020/v18i130178

(1) Dr. William C. S. Cho, Queen Elizabeth Hospital, China.
(1) Guan Wang, Tsinghua University, China.
(2) Senthil Rajan, Swamy Vivekanandha College of Pharmacy, India.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55005

Received 23 December 2019
Accepted 28 February 2020
Published 10 March 2020

Systematic Review Article

ABSTRACT

Aims: To evaluate the potential for acupuncture to help mediate hippocampal apoptosis.

Study Design: Systematic Review.

Methodology: A search was conducted through PubMed, Scopus and Web of Science using the keywords “hippocampus,” “apoptosis” and “acupuncture” and found 37 qualified articles from January 2009 to March 2019.

Results: All of the qualifying studies reviewed strongly support that acupuncture decreases the incidence of hippocampal apoptosis.

Conclusion: It was clear that acupuncture can positively affect hippocampal apoptosis. The most frequently suggested mechanism was decreased BAX expression and increased BCL-2 expression, often in the CA1 region of the hippocampus, although it was only seen in about 1/3 of the studies reviewed. Future studies are needed to further investigate the exact mechanism associated with acupuncture in hippocampal apoptosis.

Keywords: Brain ischemia; BCL-2-associated X protein expression; B-cell lymphoma 2 expressions; p38 mitogen-activated protein kinase pathway.
1. INTRODUCTION

Apoptosis is the natural process of programmed cell death that the body utilizes to maintain homeostasis and employ in processes such as cell turnover, immune system regulation, embryonic development, hormone-dependent atrophy, and chemically induced cell death. However, untimely or excessive apoptosis can instead inflict damage on the body and the ability to manipulate the life and death of a cell has the potential to produce significant therapeutic benefits [1].

Necrosis is yet another form of cell death; however, it is typically understood to be unprogrammed. It occurs as the result of noxious stimuli such as infectious agents, hypoxia, or severe environmental factors including heat, radiation, or ultraviolet irradiation. While apoptosis is part of the body’s regulative functioning, necrosis is almost always premature problematic cell death. When cells die by necrosis, they exhibit either liquefactive necrosis or coagulative necrosis [2]. It can result in loss of membrane integrity, cellular swelling, damage to organelles, disruption of lysosomes, random degradation of DNA, and inflammation from cell lysis [3].

In recent years, there has been a rise in acupuncture clinical trials within western medicine. According to previous studies, acupuncture may improve conditions such as depression, migraines, Bell's palsy, herpes zoster, and post-stroke dysphagia [4]. A variety of mechanisms associated with the positive effects of acupuncture on the aforementioned conditions have been previously proposed. For instance, the musculoskeletal conditions are thought to be improved by increased local blood flow, microinjury, facilitated healing, and analgesia. For other conditions, it is suggested that acupuncture may activate the somatic nervous system or manipulate neurotransmitter levels. Acupuncture functions with the hypothalamic pituitary adrenal (HPA) axis and reduces some hormone levels such as Luteinizing Hormone [5]. Acupuncture has been researched as a treatment for various conditions that involve hippocampal apoptosis such as Alzheimer's, cerebral infarction, and post-stroke pain [6–8].

The exact processes employed for acupuncture are still under investigation. The same is true for the mechanisms behind hippocampal apoptosis. Moreover, only the limited amount of studies about this topic exist in the current literature. Nevertheless, a multitude of studies has demonstrated the occurrence and connection of these processes paired together. Therefore, the current study investigated the relationship between hippocampal apoptosis and acupuncture to see if acupuncture can work as a mediator to decrease apoptotic activity. While the specific mechanisms for the mediation are still not fully known and understood, the current systematic review examined the current data available to suggest any potential pathways for which further studies can investigate.

2. METHODOLOGY

This systematic review utilized the PRISMA protocol and included the keywords "hippocampus," "apoptosis," and "acupuncture" using the inclusive qualifier "AND" through the databases including PubMed, Scopus, and Web of Science. It was limited to only preclinical trials available in English that were published between January 2009 and March 2019. Relevance was determined by the article being a preclinical trial that involved the application of a form of acupuncture (acupuncture, electroacupuncture, or Mongolian warm acupuncture) with an analysis of apoptotic levels in the hippocampus as part of the results. Data were independently extracted from the reports. Variables such as funding sources and bias risk were not considered.

3. RESULTS

A total of 107 articles were found among PubMed, Scopus, and Web of Science under the aforementioned search criteria. PubMed was utilized first to produce 51 results, but 20 articles were removed after being evaluated for relevance (total =31). Scopus yielded 31 results and had 24 articles removed for being identical articles found in other databases. Additionally, 3 more articles were excluded after being screened for relevance (total = 4). Web of Science produced 24 results and had 18 removed for duplication and 4 additional articles were excluded due to their lack of relevance (total = 2). As presented in Fig. 1, a total of 37 articles were qualified and included in the current systemic review.

Interestingly, all of the qualified studies were animal research studies and showed a statistically significant decrease in hippocampal...
apoptosis. As summarized in Table 1, 14 of the studies looked at the occurrence of ischemia or infarction, 4 looked at Alzheimer's, 4 looked at heroin-related conditions, and 4 looked at Dementia. 11 out of the 37 studies reported an increase in B-cell lymphoma 2 (BCL-2) expression as the anti-apoptotic mechanism or a decrease in BCL-2-associated X protein (BAX) expression. As for potential mechanism, 2 studies proposed the p38 mitogen-activated protein kinases (MAPK) pathway, 12 studies did not report any specific mechanism, and the remaining 13 studies suggested a variety of mechanisms.

4. DISCUSSION

This systematic review did find a strong connection between acupuncture and hippocampal apoptosis in the animal model, with all of the 37 studies reporting a statistically significant decrease in apoptotic levels. However, no clear mechanism was identified as the mechanisms listed varied. Furthermore, many of the studies did not examine a pathway-specific to the anti-apoptotic effects as it was not the primary focus of the research but was instead a justification for a condition being mediated by acupuncture as there was either a preestablished connection or apoptosis itself was the mechanism. However, 2 of the studies suggested that the positive effects of acupuncture may be related to the p38 pathway [11,15]. The studies gave proposed mechanisms seen only once including stimulation of the Notch 3 pathway, upregulation of the hippocampal autophagy pathway, and activation of the cyclic adenosine monophosphate response element-binding protein signalling pathway [8,21,25].

As shown in Fig. 2, the most frequently mentioned mechanism was decreased BAX expression and/or increased BCL-2 expression, often in the CA1 region of the hippocampus. This mechanism was utilized in 11 of the studies. This is a logical pathway as BAX is apoptosis regulating protein. Under stress conditions, BAX undergoes a conformation change that moves it from the cytosol to the membrane of the mitochondria to release cytochrome c to ultimately promote caspase 3 which is the key player in the execution phase of apoptosis [43]. Downregulating BAX would reduce this process to in turn reduce apoptosis. BCL-2 inhibits BAX's movement by stabilizing the mitochondrial membrane's barrier function so that BAX can no longer pass through [43]. It has been suggested that as it pertains to the middle cerebral artery, electroacupuncture promotes BCL-2 expression in the mitochondria by reducing the expression of Death Receptor 5 [44].

Fig. 1. PRISMA chart for a systematic review
Table 1. summarizing the important information from the 37 studies being examined from the systematic review

<table>
<thead>
<tr>
<th>Author(s), year</th>
<th># of subjects</th>
<th>Results</th>
<th>Mechanism</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Huang R, et al., [6] 60 adult Sprague-Dawley rats</td>
<td>EA + gastrodin has synergistic effect to inhibiting hippocampal apoptosis in AD rats.</td>
<td>Increased BCL-22 expression in CA1 region and decreased BAX expression in the CA1 region</td>
<td>P < 0.05</td>
<td></td>
</tr>
<tr>
<td>2. Tian R, et al, [8] 30 Male C57mice weighing 16–18 g</td>
<td>EA inhibited hippocampal apoptosis in mice with cerebral infarction by stimulating the Notch3 signalling pathway and triggering corresponding protein expression.</td>
<td>Stimulated the Notch 3 pathway and triggered the expression of the protein TNF-α to ultimately reduce area of infarction, level of inflammatory factors, and expression of caspase-3</td>
<td>P < 0.01</td>
<td></td>
</tr>
<tr>
<td>3. Han L, et al., [9] 84 rats</td>
<td>The infarction volume and the hippocampal neuron's total apoptosis rate of the EA group decreased.</td>
<td>The protein expression of BCL-2 and BCL-2/BAX of the EA group increased; and the protein expression of BAX of the EA group decreased</td>
<td>P < 0.05</td>
<td></td>
</tr>
<tr>
<td>4. Lu J, et al., [10] 60 12-week-old, male Wistar-Kyoto rats</td>
<td>All tested acupuncture methods prevent target organ damage by inhibiting cell apoptosis in the hippocampus in spontaneously hypertensive rats.</td>
<td>Increasing the hippocampal BCL-2/BAX ratio and inhibiting cell apoptosis in the hippocampus</td>
<td>P < 0.05</td>
<td></td>
</tr>
<tr>
<td>5. Zhu W, et al., [11] 80 Male Wistar rats averaging 200–220 g</td>
<td>Acupuncture treatment improved VD through anti-oxidative and anti-apoptotic mechanisms which involved the up-regulations of Trx-1/TrxR-1 and inhibitions of ASK1-JNK/p38 pathway.</td>
<td>Up-regulations of Trx-1/TrxR-1 and inhibitions of ASK1-JNK/p38 pathway.</td>
<td>P < 0.05</td>
<td></td>
</tr>
<tr>
<td>6. Qing P, et al., [12] 46 Sprague Dawley Rats</td>
<td>EA plus RT lessened the neuronal apoptosis and enlargement of intercellular space.</td>
<td>Increasing the expression of GAP-43 and SYP in hippocampal CA-3 region.</td>
<td>P < 0.05</td>
<td></td>
</tr>
<tr>
<td>7. Gao YL, et al., [13] 48 male Sprague-Dawley rats</td>
<td>Lower levels of neuronal apoptosis in the hippocampus and VTA were observed in the Heroin +acupuncture group.</td>
<td>Inhibition of CHOP and JNK upregulation</td>
<td>P = 0.013</td>
<td></td>
</tr>
<tr>
<td>8. Li W, et al., [14] 120 Sprague Dawley</td>
<td>EA or Prozac treatment significantly decreased the apoptosis rate in</td>
<td>Activated ERK signaling and RSK</td>
<td>P < 0.05</td>
<td></td>
</tr>
</tbody>
</table>

1Electroacupuncture
2Alzheimer’s Disease
3B-cell Lymphoma 2
4Cornu Ammonis 1
5Bcl-2-associated X protein
6Tumor necrosis factor-alpha
7Vascular Dementia
8Thioredoxin/Thioredoxin reductase 1
9Apoptosis Signal-regulating Kinase 1- c-Jun N-terminal kinase/p38 pathway
10Rehabilitation Training
11Neuronal growth-associated protein 43
12Synaptophysin
13Cornu Ammonis-3
14Peripheral terminal area
15CCAAT-enhancer binding protein homologous protein
16c-Jun N-terminal kinase
<table>
<thead>
<tr>
<th>Author(s), year</th>
<th># of subjects</th>
<th>Results</th>
<th>Mechanism</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Lan X, et al., [15]</td>
<td>250 male Sprague Dawley rats</td>
<td>Electroacupuncture reduced hippocampal apoptosis in the CA1 region in rats with cerebral ischemia/reperfusion injury.</td>
<td>Inhibits p38 MAPK signaling pathway</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>10. He X, et al., [16]</td>
<td>Sprague Dawley rats</td>
<td>EA pretreatment plays a crucial role in neuroprotection by decreasing levels of apoptotic levels in the hippocampus.</td>
<td>Wnt/β-catenin agonist to upregulate the BCL-2/BAX ratio</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>11. Lin Y, et al., [17]</td>
<td>90 Sprague Dawley rats</td>
<td>After treatment on the middle cerebral artery ischemia model with acupuncture and hypothermia, the apoptotic levels significantly decreased.</td>
<td>Down-regulation of BAX level, and up-regulation of BCL-2 level, which is related to reducing the levels of p-MEK2 and p-ERK1/2</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>12. He XL, et al., [18]</td>
<td>5-month-old male senescence-accelerated mouse prone 8 (SAMP8) and age-matched homologous normal aging mice)</td>
<td>EA preventive treatment might improve cognitive deficits and neuropathological changes in SAMP8 mice by reducing neuronal apoptosis in the CA1 region and other processes.</td>
<td>No mechanism is given</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>13. Tian GH, et al., [7]</td>
<td>75 Adult male Sprague Dawley rats</td>
<td>After EA, the apoptotic levels in the neocortex and hippocampus sections of the central poststroke pain model rats decreased sharply with low-frequency having the best efficacy.</td>
<td>No mechanism given</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>14. Chen Y, et al., [19]</td>
<td>Sprague Dawley Rats</td>
<td>EA pretreatment with different waveforms alleviates sepsis-induced brain injury by improving a variety of factors, including decreasing apoptotic levels.</td>
<td>No mechanism is given</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>15. Wu C, et al., [20]</td>
<td>200 male Sprague Dawley Rats</td>
<td>EA alleviates neurological deficit, reduces apoptosis index, and simultaneously upregulates the expression of p-ERK signal pathway in rats subjected to ischemia-reperfusion injury.</td>
<td>No mechanism given</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>16. Guo HD, et al., [21]</td>
<td>42 rats</td>
<td>EA reduced this Aβ-induced neuronal apoptosis in the hippocampal CA1 region.</td>
<td>Upregulation of the autophagy pathway in the Hippocampus</td>
<td>$P < 0.001$</td>
</tr>
<tr>
<td>17. Zhang Y, et al., [22]</td>
<td>60 Sprague Dawley rats</td>
<td>The degree of neuronal apoptosis in the hippocampus of rats in the Heroin+ acupuncture and Heroin+ methadone groups was significantly reduced compared with the untreated Heroin group.</td>
<td>No mechanism given</td>
<td>$P < 0.001$</td>
</tr>
</tbody>
</table>

11. Extracellular receptor kinase
17. ribosomal s6 kinase
18. p38 mitogen-activated protein kinase
19. Phosphor mitogen-activated protein kinase
20. Phospho extracellular receptor kinase
21. Cornu Ammonis 1
22. Amyloid beta
<table>
<thead>
<tr>
<th>Author(s), year</th>
<th># of subjects</th>
<th>Results</th>
<th>Mechanism</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Zhang Y, et al., [23]</td>
<td>80 Sprague Dawley rats</td>
<td>Acupuncture may exert neuroprotective effects via inhibiting cellular apoptosis, increased GDNF24 and BDNF25 expression levels in rat hippocampus experiencing hypoxia-ischemia in the CA 1 region.</td>
<td>No mechanism given</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>19. Tian WJ, et al., 40 male Sprague Dawley rats</td>
<td></td>
<td>Scalp-acupuncture can regulate the expression of apoptosis-related proteins BCL-2 of astrocytes in the CA 1 region of hippocampus in vascular dementia model rats.</td>
<td>Up-regulation of decreased BCL-2 protein expression</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>20. Lin R, et al., [25]</td>
<td>48 male Sprague Dawley rats</td>
<td>EA activated the CREB26 signaling pathway to inhibit apoptosis in the ischemic penumbra.</td>
<td>Activated the CREB signalling pathway</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>21. Guo HD, et al., [26]</td>
<td>Sprague Dawley Rats</td>
<td>EA alleviated the cellular apoptosis caused by Aβ27 infusion in hippocampus CA1 regions.</td>
<td>Uregulation of the expression of BCL-2 and downregulating the expression of BAX</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>22. Chen HL, et al., [27]</td>
<td>144 male Sprague Dawley Rats</td>
<td>EA pretreatment can effectively suppress the number of hippocampal apoptotic neurons and increase the survival rate of neurons in rats with global cerebral ischemia/reperfusion injury.</td>
<td>Up-regulation of the expression of GRP 7828 protein and down-regulating the expression of GADD 15329 protein in the hippocampus</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>23. Liu Z, et al., [28]</td>
<td>C57BL/6 mice</td>
<td>EA pretreatment improved neurological outcome, promoted cell survival by inhibiting neuronal apoptosis, and decreasing the BAX/BCL-2 ratio after reperfusion.</td>
<td>Decreasing the BAX/BCL-2 ratio</td>
<td>$P = 0.013$</td>
</tr>
<tr>
<td>24. Hou X, et al., [29]</td>
<td>40 rats</td>
<td>Acupuncture can prevent brain cell apoptosis in heroin readdicted rats.</td>
<td>Altering cell ultrastructure thorough regulating the expression of the apoptosis-related genes BCL-2 and BAX and changing BCL-2/BAX ratio</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>25. Yuan S, et al., [30]</td>
<td>40 rats</td>
<td>Differences in the percentage of TUNEL30-positive cells within the hippocampal CA1 region on the 1st day, 3rd day, and 7th day after the AMIR31 the event was significant among all the groups.</td>
<td>No mechanism is given</td>
<td>$P < 0.05$</td>
</tr>
<tr>
<td>26. Zhou HP, et al., [31]</td>
<td>120 senile male Wistar rats</td>
<td>The numbers of apoptotic neurons and positive neurons of caspase-3 significantly decreased in the acupuncture pre-conditioning group versus the cerebral ischemic group.</td>
<td>Lowered expression of caspase-3 protein</td>
<td>$P < 0.01$</td>
</tr>
<tr>
<td>27. Feng S, et al., [32]</td>
<td>54 male Sprague Dawley rats</td>
<td>EA pretreatment inhibited hippocampal cell apoptosis and decreased hippocampal CA1 caspase-3 activation by +Gz32 exposure.</td>
<td>No mechanism given</td>
<td>$P < 0.05$</td>
</tr>
</tbody>
</table>

24Glial cell-derived neurotrophic factor
25Brain-derived neurotrophic factor
26cyclic adenosine monophosphate response element-binding protein
27 insoluble β-amyloid (Aβ) plaque
28glucose regulated protein 78
29growth arrest and DNA damage-inducible gene 153
30Terminal deoxynucleotidyl transferase dUTP nick end labeling
31Acute myocardial ischemia-reperfusion
32High-sustained positive acceleration exposures
<table>
<thead>
<tr>
<th>Author(s), year</th>
<th># of subjects</th>
<th>Results</th>
<th>Mechanism</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma HF, et al., [33]</td>
<td>40 male Sprague Dawley rats</td>
<td>Compared with model group, the percentages of apoptotic cells of CA 3 area in acupuncture I and acupuncture II groups lowered remarkably.</td>
<td>Upregulated the expression of Cannabinoid 1 receptor</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Zhu Y, et al., [34]</td>
<td>40 male Sprague Dawley rats</td>
<td>EA improves learning and memory ability and protects pyramidal cells from hippocampal apoptosis in vascular dementia rats.</td>
<td>Inhibits expression of p53 and Noxa in the hippocampal CA1 region</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Dai W et al., [35]</td>
<td>65 Sprague Dawley rats</td>
<td>EA can reduce apoptosis and down-regulate p-JNK level in the hippocampus of depression rats.</td>
<td>No mechanism given</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td>Liu ZB, et al., [36]</td>
<td>40 Sprague Dawley rats</td>
<td>The expression of hippocampal BCL-2 was up-regulated significantly and that of hippocampal BAX protein downregulated considerably in the EA group.</td>
<td>Up-regulated BCL-2 and down-regulated BAX</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Li-Da Z, et al., [37]</td>
<td>30 Sprague Dawley rats</td>
<td>Compared with the model group, rat's hippocampus and VTA in the acupuncture group showed significantly fewer apoptotic cells.</td>
<td>No mechanism given</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Bao L, et al., [38]</td>
<td>72 Wistar rats</td>
<td>Mongolian medical warm acupuncture was able to protect the hippocampal neurons by changing the content of the apoptosis factors.</td>
<td>up-regulate the expression of the BCL-2 protein in the hippocampus, down-regulate the expression of the BAX protein, and increase the BCL-2/BAX ratio</td>
<td>(P = 0.024)</td>
</tr>
<tr>
<td>Kim S-T, et al., [39]</td>
<td>64 Male C57BL/6 mice</td>
<td>Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the neuron death, microglial and other factors in the hippocampus.</td>
<td>No mechanism given</td>
<td>(P < 0.01)</td>
</tr>
<tr>
<td>Wang T, et al., [40]</td>
<td>70 male Wistar rats</td>
<td>In Hippocampal CA 1 region, acupuncture decreased the number of apoptotic cells.</td>
<td>Increase BCL-2 and decrease BAX</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td>Yang, J-W, et al., [41]</td>
<td>84 Eight-week-old male Wistar rats</td>
<td>Acupuncture resulted in a total of 31 proteins were considered DEPs, 13 of which were related to reduced apoptosis.</td>
<td>Alteration of 13 different proteins</td>
<td>(P < 0.05)</td>
</tr>
<tr>
<td>Lin R, et al., [42]</td>
<td>30 APP/PS1 double-transgenic mice</td>
<td>EA at the Baihui (DU20) acupoint, but not at a non-acupoint, reverses the aberrant cell death observed.</td>
<td>altering the expression and processing of BDNF</td>
<td>(P < 0.01)</td>
</tr>
</tbody>
</table>

33 Differentially expressed proteins
Nevertheless, the results overwhelmingly suggested that acupuncture does have the potential to treat hippocampal apoptosis in the animal model. Further studies are needed to establish a potential mechanism to confirm this connection. The specific acupoints repeated in multiple studies were also recorded on a separate list (Table 2). Some of them were used
Apoptosis, when in excess, can result in degenerative diseases. When insufficiently applied, it can result in cancer or autoimmune diseases. Cell responses that increase or limit apoptotic activity are triggered by various forms of stress such as “hypoxia, energy deprivation, DNA damage or inflammation” [45]. This literature review focuses specifically on apoptosis in the hippocampal region of the brain. Some conditions involving detrimental damage as the result of hippocampal apoptosis are arsenic exposure [46], Cognitive deficits with aging [47], acute hypoxia [48], radiation exposure [49] and Lead exposure [50]. It can also be the result of certain medications such as the result of Sevoflurane exposure, as used in general anesthesia [51] or chronic use of methylphenidate, also known as Ritalin [52]. Furthermore, it can play a role in diseases such as diabetes-induced Ca^{2+} entry and oxidative stress [53] or Alzheimer’s Disease [54].

As seen in the various studies utilized by this systematic review, downregulating hippocampal apoptosis is either a mechanism for or indicator of reduction in health conditions including Alzheimer’s, cerebral infarction, cerebral ischemia reperfusion, spontaneous hypertension, vascular dementia, brain injury by heroin addiction, depression-like symptoms, accelerated senescence, central poststroke pain, myocardial ischemia, hyper gravity induced impairment, insomnia, and kainic acid-induced neuronal death.

The World Health Organization lists acupuncture as an alternative and complementary strategy for treatment post-stroke. In an ischemic stroke, the main mechanisms are suggested to be the promotion of central nervous system neurogenesis and cell proliferation, cerebral blood flow regulation in the ischemic area, decreased apoptosis in the ischemic area, and neurochemical regulation [55]. Various forms of infarctions and ischemia were being studied in 15 out of the 37 articles in this study, a condition also signifying blood flow blockage. Acupuncture may achieve its anti-apoptotic effects either through or with increasing blood flow. Chavez’s 2017 systematic review found the most used acupoints to be Baihui (GV20), Zusanli (ST36), Quchi (LI11), Shuigou (GV26), Dazhui (GV14), and Hegu (LI4), showing similarity to this systematic review that had the highest incidence of Baihui (GV 20), Zusanli (ST 36), Dazhui (GV 14) and Sanyinjiao (SP 6) [55].

Another treatment that has been suggested to aid in preventing hippocampal apoptosis is antidepressants, drugs, like selective serotonin reuptake inhibitors (SSRIs). While the exact mechanisms are not clearly defined besides the acute upregulation of monoamine neurotransmission, they hold therapeutic potential. It is generally understood that SSRIs inhibit the reuptake of serotonin at the synapse, leaving more to bind to the serotonin receptors and go into the bloodstream. There is conflicting data as to whether they increase neurogenesis in the hippocampus or lead to an increase in neuronal turnover [3]. Antidepressants were found to help prevent cell death by increasing neurotrophin release and the expression of neurotrophin receptors, activating survival kinases. With repeated stress, Fluoxetine has been shown to reverse dentate gyrus cell death that succeeded chronic stress [56].

5. CONCLUSION

While the specific mechanisms for acupuncture attenuating hippocampal apoptosis are still not yet known, the current systematic review concludes that acupuncture does have the ability to do so. The ability to downregulate excessive hippocampal apoptosis has the potential to improve multiple conditions such as Alzheimer’s, stroke, and other ischemia related conditions. The mechanisms proposed by many studies involved the intermediary steps of increasing the BCL-2/BAX ratio though both upregulation of BCL-2 and downregulation of BAX, often in the CA1 or CA3 region. Further research is still needed to conclude on a potential pathway. Apoptosis can be induced directly through a variety of mechanisms including irradiation of ultraviolet B, small molecule drug treatments, ligation of death receptors like the mouse monoclonal anti-Fas antibody, and exposure to granule components of cytotoxic lymphocytes [57]. One of the primary weaknesses in this area of research is the lack of human trials. All of the 37 articles examined in the current study were animal research studies utilizing rodent models. Of course, it is extremely difficult to examine hippocampal apoptosis in humans due to a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, which is the most widely used methodology for detecting and...
quantifying hippocampal apoptosis. It requires the cranium to be opened and hippocampal brain tissue to be extracted, which creates significant ethical restrictions from utilizing human subjects [58]. Even if discoveries were made and significant in the animal models, it is uncertain that the research regarding animal models will directly reflect a human response. Thus, the future studies examining any relevant biomarkers related to an acupuncture-induced decrease in hippocampal apoptosis in human models are warranted.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

COMPETING INTEREST

Authors have declared that no competing interests exist.

REFERENCES

33. Ma H, Ren X, Tu Y, Zhou L. Effect of electroacupuncture on the expression of hippocampal calbindin-D 28 K in hyperlipemia rats with concurrent cerebral
52. Motaghinejad M, Motevalian M, Babalouei F, Abdollahi M, Heidari M, Madjd Z. Possible involvement of CREB/BDNF signaling pathway in neuroprotective effects of topiramate against methyl-

